P1 Phage
   HOME

TheInfoList



OR:

P1 is a
temperate In geography, the temperate climates of Earth occur in the middle latitudes (23.5° to 66.5° N/S of Equator), which span between the tropics and the polar regions of Earth. These zones generally have wider temperature ranges throughout t ...
bacteriophage A bacteriophage (), also known informally as a ''phage'' (), is a duplodnaviria virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν ('), meaning "to devour". Bacteri ...
that infects ''
Escherichia coli ''Escherichia coli'' (),Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. also known as ''E. coli'' (), is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus ''Escher ...
'' and some other bacteria. When undergoing a
lysogenic cycle Lysogeny, or the lysogenic cycle, is one of two cycles of viral reproduction (the lytic cycle being the other). Lysogeny is characterized by integration of the bacteriophage nucleic acid into the host bacterium's genome or formation of a circul ...
the phage genome exists as a
plasmid A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; how ...
in the bacterium unlike other phages (e.g. the
lambda phage ''Enterobacteria phage λ'' (lambda phage, coliphage λ, officially ''Escherichia virus Lambda'') is a bacterial virus, or bacteriophage, that infects the bacterial species ''Escherichia coli'' (''E. coli''). It was discovered by Esther Lederb ...
) that integrate into the host DNA. P1 has an icosahedral head containing the DNA attached to a contractile tail with six tail fibers. The P1 phage has gained research interest because it can be used to transfer DNA from one bacterial cell to another in a process known as transduction. As it replicates during its lytic cycle it captures fragments of the host chromosome. If the resulting viral particles are used to infect a different host the captured DNA fragments can be integrated into the new host's genome. This method of in vivo genetic engineering was widely used for many years and is still used today, though to a lesser extent. P1 can also be used to create the
P1-derived artificial chromosome A P1-derived artificial chromosome, or PAC, is a DNA construct derived from the DNA of P1 bacteriophages and Bacterial artificial chromosome. It can carry large amounts (about 100–300 kilobases) of other sequences for a variety of bioengineeri ...
cloning vector A cloning vector is a small piece of DNA that can be stably maintained in an organism, and into which a foreign DNA fragment can be inserted for cloning purposes. The cloning vector may be DNA taken from a virus, the cell of a higher organism, or ...
which can carry relatively large fragments of DNA. P1 encodes a site-specific recombinase, Cre, that is widely used to carry out cell-specific or time-specific DNA recombination by flanking the target DNA with ''loxP'' sites (see
Cre-Lox recombination Cre-Lox recombination is a site-specific recombinase technology, used to carry out deletions, insertions, translocations and inversions at specific sites in the DNA of cells. It allows the DNA modification to be targeted to a specific cell type ...
).


Morphology

The virion is similar in structure to the
T4 phage Escherichia virus T4 is a species of bacteriophages that infect ''Escherichia coli'' bacteria. It is a double-stranded DNA virus in the subfamily ''Tevenvirinae'' from the family Myoviridae. T4 is capable of undergoing only a lytic lifecycle ...
but simpler. It has an icosahedral head containing the genome attached at one vertex to the tail. The tail has a tube surrounded by a contractile sheath. It ends in a base plate with six tail fibres. The tail fibres are involved in attaching to the host and providing specificity.


Genome

The genome of the P1 phage is moderately large, around 93Kbp in length (compared to the genomes of e.g. T4 - 169Kbp,
lambda Lambda (}, ''lám(b)da'') is the 11th letter of the Greek alphabet, representing the voiced alveolar lateral approximant . In the system of Greek numerals, lambda has a value of 30. Lambda is derived from the Phoenician Lamed . Lambda gave rise ...
- 48Kbp and Ff - 6.4Kbp). In the viral particle it is in the form of a linear double stranded DNA molecule. Once inserted into the host it circularizes and replicates as a plasmid. In the viral particle the DNA molecule is longer (110Kbp) than the actual length of the genome. It is created by cutting an appropriately sized fragment from a concatemeric DNA chain having multiple copies of the genome (see the section below on lysis for how this is made). Due to this the ends of the DNA molecule are identical. This is referred to as being terminally redundant. This is important for the DNA to be circularized in the host. Another consequence of the DNA being cut out of a
concatemer A concatemer is a long continuous DNA molecule that contains multiple copies of the same DNA sequence linked in series. These polymeric molecules are usually copies of an entire genome linked end to end and separated by ''cos'' sites (a protein bi ...
is that a given linear molecule can start at any location on the circular genome. This is called a cyclical permutation. The genome is especially rich in Chi sequences recognized by the bacterial recombinase
RecBCD Exodeoxyribonuclease V (EC 3.1.11.5, RecBCD, Exonuclease V, ''Escherichia coli'' exonuclease V, ''E. coli'' exonuclease V, gene recBC endoenzyme, RecBC deoxyribonuclease, gene recBC DNase, gene recBCD enzymes) is an enzyme of ''E. coli'' that ini ...
. The genome contains two origins of replication: oriR which replicates it during the lysogenic cycle and oriL which replicates it during the lytic stage. The genome of P1 encodes three tRNAs which are expressed in the lytic stage. Proteome. The genome of P1 encodes 112 proteins and 5 untranslated genes and is this about twice the size of
bacteriophage lambda ''Enterobacteria phage λ'' (lambda phage, coliphage λ, officially ''Escherichia virus Lambda'') is a bacterial virus, or bacteriophage, that infects the bacterial species ''Escherichia coli'' (''E. coli''). It was discovered by Esther Lederb ...
.


Life cycle


Infection and early stages

The phage particle adsorbs onto the surface of the bacterium using the tail fibers for specificity. The tail sheath contracts and the DNA of the phage is injected into the host cell. The host DNA recombination machinery or the cre enzyme translated from the viral DNA recombine the terminally redundant ends and circularize the genome. Depending on various physiological cues, the phage may immediately proceed to the lytic phase or it may enter a lysogenic state. The gene that encodes the tail fibers have a set of sequences that can be targeted by a site specific recombinase ''Cin''. This causes the C terminal end of the protein to switch between two alternate forms at a low frequency. The viral tail fibers are responsible for the specificity of binding to the host receptor. The targets of the viral tail fibers are under a constant pressure to evolve and evade binding. This method of recombinational diversity of the tail allows the virus to keep up with the bacterium. This system has close sequence homologies to recombinational systems in the tail fibers of unrelated phages like the
mu phage Bacteriophage Mu, also known as mu phage or mu bacteriophage, is a muvirus (the first of its kind to be identified) of the family ''Myoviridae'' which has been shown to cause genetic transposition. It is of particular importance as its discove ...
and the
lambda phage ''Enterobacteria phage λ'' (lambda phage, coliphage λ, officially ''Escherichia virus Lambda'') is a bacterial virus, or bacteriophage, that infects the bacterial species ''Escherichia coli'' (''E. coli''). It was discovered by Esther Lederb ...
.


Lysogeny

The genome of the P1 phage is maintained as a low copy number plasmid in the bacterium. The relatively large size of the plasmid requires it to keep a low copy number lest it become too large a metabolic burden while it is a lysogen. As there is usually only one copy of the plasmid per bacterial genome, the plasmid stands a high chance of not being passed to both daughter cells. The P1 plasmid combats this by several methods: * The plasmid replication is tightly regulated by a RepA protein dependent mechanism. This is similar to the mechanism used by several other plasmids. It ensure that the plasmid divides in step with the host genome. * Interlocked plasmids are quickly unlinked by Cre-lox recombination * The plasmid encodes a plasmid addiction system that kills daughter cells that lose the plasmid. It consists of a stable protein toxin and an antitoxin that reversibly binds to and neutralizes it. Cells that lose the plasmid get killed as the antitoxin gets degraded faster than the toxin.


Lysis

The P1 plasmid has a separate origin of replication (oriL) that is activated during the lytic cycle. Replication begins by a regular bidirectional theta replication at oriL but later in the lytic phase, it switches to a rolling circle method of replication using the host recombination machinery. This results in numerous copies of the genome being present on a single linear DNA molecule called a concatemer. The end of the concatemer is cut a specific site called the ''pac'' site or packaging site. This is followed by the packing of the DNA into the heads till they are full. The rest of the concatemer that does not fit into one head is separated and the machinery begins packing this into a new head. The location of the cut is not sequence specific. Each head holds around 110kbp of DNA so there is a little more than one complete copy of the genome (~90kbp) in each head, with the ends of the strand in each head being identical. After infecting a new cell this terminal redundancy is used by the host recombination machinery to cyclize the genome if it lacks two copies of the lox locus. If two lox sites are present (one in each terminally redundant end) the cyclization is carried out by the cre recombinase. Once the complete virions are assembled, the host cell is lysed, releasing the viral particles.


History

P1 was discovered in 1951 by Giuseppe Bertani in
Salvador Luria Salvador Edward Luria (August 13, 1912 – February 6, 1991) was an Italian microbiologist, later a Naturalized citizen of the United States#Naturalization, naturalized U.S. citizen. He won the Nobel Prize in Physiology or Medicine in 1969, with ...
's laboratory, but the phage was little studied until Ed Lennox, also in Luria's group, showed in 1954–5 that it could transduce genetic material between host bacteria. This discovery led to the phage being used for genetic exchange and genome mapping in ''E. coli'', and stimulated its further study as a model organism. In the 1960s, Hideo Ikeda and Jun-ichi Tomizawa showed the phage's DNA genome to be linear and double-stranded, with redundancy at the ends. In the 1970s,
Nat Sternberg Nat L. Sternberg (August 2, 1942 – September 26, 1995) was an American molecular biologist and bacteriophage researcher, particularly known for his work on DNA recombination and the phage P1. Early life and education Born in 1942 in Brooklyn ...
characterised the Cre–''lox''
site-specific recombination Site-specific recombination, also known as conservative site-specific recombination, is a type of genetic recombination in which DNA strand exchange takes place between segments possessing at least a certain degree of sequence homology. Enzymes kno ...
system, which allows the linear genome to circularise to form a plasmid after infection. During the 1980s, Sternberg developed P1 as a vector for cloning large pieces of eukaryotic DNA. A P1 gene map based on a partial DNA sequence was published in 1993 by Michael Yarmolinsky and Małgorzata Łobocka, and the genome was completely sequenced by Łobocka and colleagues in 2004.


References


External links


Viralzone: P1-like phage
{{Taxonbar, from=Q4348580 Molecular biology Myoviridae